MANUFACTURERS AND DISTRIBUTORS OF:

CAREvent® Range of Handheld Automatic Resuscitators
CAREvent® Range of Automatic Transport Ventilators
SMART BAG MO® Bag-Valve-Mask Resuscitators
Demand Valve Resuscitators
Equinox® 50% Nitrous Oxide / 50% Oxygen
Oxygen Demand Valves
Burn Relief® Burn Kits and Dressings
EasyGrip® Bag-Valve-Mask Resuscitators
CPR Bio-Barrier® Face Shields
Revive Aid® CPR Face Shields
Rescue Breather® CPR Pocket Ventilators
Respiratory Disposable Products
SQ® Regulators

Your Representative is:

O-TWO MEDICAL TECHNOLOGIES INC.
“Innovation in Resuscitation”

7575 Kimbel Street
Mississauga, Ontario
Canada L5S 1C8

Tel. (905) 677-9410 Fax (905) 677-2035
Website: www.otwo.com E-mail: resuscitation@otwo.com

For your nearest Authorized O-Two Distributor
In North America Toll Free 1-800-387-3405

AUTOMATIC TRANSPORT VENTILATORS

CAREvent® ATV+ 01CV6000

CAREvent® MRI 01CV7000

O-TWO MEDICAL TECHNOLOGIES INC.
“Innovation in Resuscitation”

EU Representative:
Marcel Houben
Rue Vinâve, 32
4030 LIEGE
Belgique

0120

ISO 13485

01CV6000

01CV7000

Manufactured in Canada by
O-Two Medical Technologies Inc.
17MP9654 - Rev Q Sept. 2008
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Warranty</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Warnings</td>
<td>1</td>
</tr>
<tr>
<td>1.3</td>
<td>Terms and Definitions</td>
<td>3</td>
</tr>
<tr>
<td>1.4</td>
<td>CAREvent® MRI</td>
<td>4</td>
</tr>
<tr>
<td>1.5</td>
<td>General Information</td>
<td>5</td>
</tr>
<tr>
<td>1.6</td>
<td>General Description</td>
<td>5</td>
</tr>
<tr>
<td>1.7</td>
<td>Principles of Operation</td>
<td>6</td>
</tr>
<tr>
<td>1.8</td>
<td>Modes of Operation</td>
<td>7</td>
</tr>
<tr>
<td>1.9</td>
<td>Alarms and Gauges</td>
<td>9</td>
</tr>
<tr>
<td>1.10</td>
<td>Accessories</td>
<td>11</td>
</tr>
<tr>
<td>1.11</td>
<td>Control Adjustment</td>
<td>12</td>
</tr>
<tr>
<td>1.12</td>
<td>Technical Data</td>
<td>14</td>
</tr>
<tr>
<td>2.</td>
<td>PREPARATION FOR USE</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>Component List</td>
<td>16</td>
</tr>
<tr>
<td>2.2</td>
<td>Connection of Hoses</td>
<td>17</td>
</tr>
<tr>
<td>2.3</td>
<td>Pre-use Functional Check</td>
<td>17</td>
</tr>
<tr>
<td>3.</td>
<td>OPERATING INSTRUCTIONS</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Setting of the Ventilation Parameters</td>
<td>21</td>
</tr>
<tr>
<td>3.2</td>
<td>Frequency/Minute Volume Chart</td>
<td>21</td>
</tr>
<tr>
<td>3.3</td>
<td>Operation in Extreme Conditions</td>
<td>22</td>
</tr>
<tr>
<td>4.</td>
<td>AFTER USE CLEANING AND TESTING</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Dismantling and Cleaning</td>
<td>22</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Changing the Air Intake Filter</td>
<td>23</td>
</tr>
<tr>
<td>4.2</td>
<td>After Use and Monthly Checking</td>
<td>23</td>
</tr>
<tr>
<td>5.</td>
<td>MAINTENANCE SCHEDULE</td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>Annual Preventative Maintenance Inspection</td>
<td>24</td>
</tr>
<tr>
<td>6.</td>
<td>TROUBLE SHOOTING CHART</td>
<td>25</td>
</tr>
<tr>
<td>7.</td>
<td>CAREvent® ACCESSORIES</td>
<td>27</td>
</tr>
</tbody>
</table>

7. CAREvent® Accessories

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>01CV8015</td>
<td>CAREvent® Deluxe Single Use Transport Ventilation Circuit with PEEP Port</td>
</tr>
<tr>
<td>17MP7010</td>
<td>Single Use PEEP Valve</td>
</tr>
<tr>
<td>17MP7327-Cs</td>
<td>Air Intake Filter for CAREvent® ATV+ & MRI</td>
</tr>
<tr>
<td>01CV7025</td>
<td>CAREvent® MRI Mounting Bracket</td>
</tr>
<tr>
<td>01CV7026</td>
<td>CAREvent® MRI Stand and Mounting Bracket</td>
</tr>
<tr>
<td>01CV7030</td>
<td>CAREvent® ATV+ & MRI Ambulance Mounting Bracket</td>
</tr>
</tbody>
</table>
1. INTRODUCTION

1.1 Warranty

The CAREvent® ATV+ and MRI are manufactured from the finest quality materials. Each individual part is subject to strict quality control tests to ensure exceptionally high standards. The manufacturer warrants to the purchaser of the Automatic Transport Ventilator that its component parts are free from defects in material and workmanship for a period of two years from the date of purchase. The manufacturer will replace and/or repair all parts of the Automatic Transport Ventilator at its option for two years from the date of purchase at no cost to the purchaser, upon the notification of the defects, in writing by the purchaser and confirmation of said defect by the manufacturer. All shipping costs shall be borne by the purchaser. The manufacturer shall be liable under this warranty only if the Automatic Transport Ventilator and its parts have been used and serviced in the normal manner described in the instruction manual. There are no other expressed or implied warranties. This warranty gives no specific legal rights.

NOTE: THIS DEVICE MUST BE SERVICED BY AN O-TWO SYSTEMS AUTHORIZED SERVICE CENTER

1.2 Warnings

The CAREvent® ATV+ and MRI are intended for use by suitably trained and qualified personnel.

The following precautions should always be observed:

1. READ THIS MANUAL PRIOR TO ATTEMPTING TO USE THE VENTILATOR.
2. WHEN THE UNIT IS IN USE, DO NOT SMOKE OR USE NEAR OPEN FLAME EITHER DURING USE OR WHEN CHANGING THE CYLINDER.
3. WHEN NOT IN USE, ALWAYS TURN OFF THE GAS SUPPLY.
4. NEVER ALLOW OIL OR GREASE TO COME INTO CONTACT WITH ANY PART OF THE CYLINDER, REGULATOR OR VENTILATOR.
5. THIS DEVICE IS NOT DESIGNED FOR USE WITH HEATED HUMIDIFIERS.

- Low Input Pressure Alarm sounds intermittently or continuously.
- Gas supply low. Cylinder valve not fully opened.
- Automatic circuit shut-off not activating on demand breathing.
- Poor patient circuit integrity/loose connections or faulty patient valve.
- Breathing System Integrity Alarm Sounds
- Demand flowrate low or not functioning
- Supply pressure too low (Low Input Pressure Alarm will sound).
- Faulty gas supply regulator.
- Gas supply cylinder low or empty.
- Regulator output insufficient.
- Cylinder valve not fully open.
- Brand of circuit used may be entraining room air through expiratory port.
- Incorrectly selected airway pressure.
- Airway obstructed.
- Selected Minute Volume too high / Frequency of ventilation too slow.
- Change the settings selected.
- Airway Pressure Alarm sounds.
- Select a higher pressure.
- Correct the obstruction.
- Change Cylinder Open Valve fully.
- Replace supply hose.
- Replace pressure regulator.
- Check all circuit connections and hose for tears/holes.
- Re-position facemask.
- Re-connect circuit.
- Adjust ventilator settings.
- Use only O-Two approved circuits.
6. TROUBLE SHOOTING CHART

NOTE: If any of the remedies do not resolve the problem you are experiencing please contact your nearest Approved Service Centre.

<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>PROBABLE CAUSE</th>
<th>REMEDY</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATV+ does not function in any mode</td>
<td>Gas supply exhausted</td>
<td>Replace cylinder.</td>
</tr>
<tr>
<td>ATV+ does not function in automatic mode</td>
<td>Gas supply not turned on fully.</td>
<td>Open cylinder valve</td>
</tr>
<tr>
<td>ATV+ does not function in automatic mode</td>
<td>Supply hose not connected</td>
<td>Connect supply hose.</td>
</tr>
<tr>
<td>ATV+ does not function in automatic mode</td>
<td>Gas pressure regulator faulty.</td>
<td>Replace pressure regulator.</td>
</tr>
<tr>
<td>ATV+ does not function in automatic mode</td>
<td>Gas supply hose kinked or cut.</td>
<td>Replace supply hose.</td>
</tr>
<tr>
<td>Insufficient ventilations</td>
<td>Manual/AUTO switch in the Manual position.</td>
<td>Switch to AUTO</td>
</tr>
<tr>
<td>Insufficient ventilations</td>
<td>Internally clogged orifice in the Frequency or Minute Volume controls.</td>
<td>Switch selector knobs to a different position.</td>
</tr>
<tr>
<td>Insufficient ventilations</td>
<td>Other control knobs may be incorrectly positioned.</td>
<td>Check all selector knob positions.</td>
</tr>
<tr>
<td>Insufficient ventilations</td>
<td>Incorrect control setting selection.</td>
<td>Check selector positions.</td>
</tr>
<tr>
<td>Insufficient ventilations</td>
<td>Other control knobs may be incorrectly positioned.</td>
<td>Check selector positions.</td>
</tr>
<tr>
<td>Insufficient ventilations</td>
<td>Internal blockage in Minute Volume Control.</td>
<td>Switch to another Minute Volume setting.</td>
</tr>
<tr>
<td>Insufficient ventilations</td>
<td>Pressure relief setting too low.</td>
<td>Check selector position.</td>
</tr>
</tbody>
</table>

6. DO NOT DISASSEMBLE ANY PART OF THE VENTILATOR EXCEPT WHERE DESCRIBED IN THIS MANUAL AS ANY UNAUTHORIZED DISASSEMBLY WILL INVALIDATE THE WARRANTY.

7. AFTER USE, ALWAYS ENSURE THAT ALL COMPONENTS ARE CLEANED IN ACCORDANCE WITH THE INSTRUCTIONS PROVIDED IN THIS MANUAL. (SEE SECTION 4)

8. ALWAYS USE THE CHECK LIST TO ENSURE THAT ALL COMPONENTS ARE REASSEMBLED CORRECTLY AND READY FOR USE.

9. IT IS RECOMMENDED THAT AN ALTERNATIVE MEANS OF VENTILATING THE PATIENT BE AVAILABLE IN CASE OF GAS SUPPLY FAILURE.

10. DURING USE, THE PATIENT SHOULD NOT BE LEFT UNATTENDED.

11. THE USE OF ANY DEVICES IN AREAS WHERE THE AMBIENT AIR MAY BE HAZARDOUS OR EXPLOSIVE SHOULD BE AVOIDED AS ENTRAINMENT OF AMBIENT AIR DURING THE USE OF THE AIR MIX MODE WILL PERMIT THE PATIENT TO INHALE ATMOSPHERIC GAS.

12. ONLY THE CAREvent® MRI UNIT MAY BE USED IN A MAGNETIC RESONANCE IMAGING DEPARTMENT.

13. ONLY PATIENT CIRCUITS SUPPLIED BY O-TWO SYSTEMS SHOULD BE USED, AS THE USE OF OTHER CIRCUITS MAY ADVERSELY AFFECT THE OUTPUT PERFORMANCE OF THE ATV.

14. THE USE OF GAS PRESSURE REGULATORS THAT DO NOT MAINTAIN A MINIMUM OUTPUT PRESSURE AND FLOWRATE IN LINE WITH THE REQUIREMENTS OF THE SPECIFICATION MAY CAUSE THE DEVICE TO FAIL RESULTING IN THE PATIENT NOT BEING VENTilated.

15. THE USE OF THIS DEVICE IN CARRING CASE OF ANY TYPE MAY, WHEN USED IN THE 60% AIR MIX MODE, RESULT IN AN INCREASE IN OXYGEN CONCENTRATION. IF THE AIR MIX MODE IS TO BE USED IT IS RECOMMENDED THAT THE VENTILATOR BE PLACED IN ITS NORMAL OPERATING ORIENTATION AND THAT THE AIR INTAKE ON THE REAR OF THE VENTILATOR IS NOT OBSTRUCTED.
1.3 Terms and Definitions

Airway Resistance: Pressure drop across the airway per unit flow.

ATV: Automatic Transport Ventilator

CMV: Controlled Mandatory Ventilation.

CPAP: A positive pressure applied to the lungs during all ventilation phases (Continuous Positive Airway Pressure).

Demand Valve: A valve that delivers gas to the patient at a flowrate equivalent to that demanded by the patient’s inspiratory effort.

Expiratory Phase: The time period from the end of the inspiratory flow to the end of the expiratory flow.

Expiratory Time (Te): Duration of the expiratory phase.

Frequency (f): The number of breaths in one minute (also expressed as BPM).

Inspiratory Flow: The flow delivered to the patient by the ventilator during the inspiratory phase.

Inspiratory Phase: The interval from the start of the inspiratory flow to the start of the expiratory phase.

Inspiratory Time (Ti): Duration of the inspiratory phase.

Lung Compliance: Volume added per unit pressure increase when gas is added to a human or artificial lung.

Maximum Patient inflation Pressure: The maximum airway pressure delivered by the ventilator to the patient.

Minute Volume (Vm): The total volume of gas delivered to the patient in one minute.

5. MAINTENANCE SCHEDULE

5.1 Annual Preventative Maintenance Inspection

It is recommended that the ventilator is returned to a service centre (authorized by the manufacturer to undertake service and repair of this device) for an Annual Preventative Maintenance inspection (more frequently in high use areas). The inspection will incorporate a full diagnostic test of all parameters. When complete, a certificate of compliance will be issued to cover the device for the next service period.

This maintenance inspection, providing it is carried out by an authorized service centre, will not affect the product warranty.
4.1.1 Changing the Air Intake Filter

To change the air intake filter, undo the locking screw on the filter cover, which is located on the rear panel of the unit. Remove the old filter and discard following local protocols. Replace the filter with a new one ensuring that the filter is properly located and then reattach the cover, screwing the cover on finger tight.

NOTE: It is recommended that the air intake filter is changed after each use of the ventilator using the 60% air/oxygen mix mode to avoid using a partially occluded or contaminated filter for the next patient.

![Fig. 7. Rear Panel Layout](image)

4.2 After Use and Monthly checking

After Use

After each use the ventilator should be cycled to confirm function. The selectors should be rotated through all positions and all alarm functions should be checked to ensure function (see section 2.3).

Monthly

Every month (or more frequently if local protocols dictate) the ventilator should be put through a checking procedure to ensure full function of all features. The checking protocol detailed in section 2.3 “Pre-use Functional Check” should be followed for this purpose.

Oxygen Concentration: The oxygen content of the inspired gases expressed as a percentage.

Proximal Airway Pressure: The airway pressure measured at the patient valve.

Patient Valve: The valve which directs the flow of gas into the lungs and out of the expiratory port to atmosphere during expiration.

PEEP Valve: A device which, when attached to the expiratory port of the patient valve, holds a positive pressure in the patient's airway at the end of the expiratory phase. (Positive End Expiratory Pressure)

Pressure Relief Valve: Valve which limits the maximum lung inflation pressure by venting excess gas to atmosphere.

Tidal Volume (Vt): Volume of gas delivered to the patient during each inspiratory phase.

G05*: Guidelines 2005 compliance. Complies with the requirements of the ERC and AHA for 30:2 compression : ventilation ratio.

1.4 CAREvent® MRI

The CAREvent® MRI has been designed to meet the requirements of ventilation within the MRI environment. The CAREvent® MRI has been tested in a 1.5 Tesla MRI environment (unshielded magnet - spatial gradient of <23Mt/m/sec and a slew rate of 120 T/m/sec at an RF transmitter power of 2000 watts) and a 3.0 Tesla MRI environment (unshielded magnet - spatial gradient of < 40Mt/m/sec and a slew rate of 150 T/m/sec at an RF transmitter power of 8000 watts) during a head phantom spectroscopy test scan with the device located no less than 12 inches from the magnet aperture which would be its normal use position during clinical use.

In addition, the CAREvent® MRI model can be attached to the CAREvent® MRI mounting plate or attachment to a cart or wall/medirail mounting bracket.
1.5 General Information

The CAREvent™ ATV+ and MRI are designed for use in the prehospital, intrahospital, interhospital and air ambulance settings.

Designed to be used by suitably trained personnel, the various modes of operation of the device support the resuscitation and transportation of a wide range of patients (from infants to adults) who require ventilatory support. The features and controls offered by the device comply with the various International Standards for Transport Ventilators.

The G05® models have been manufactured to comply with the latest Guidelines 2005 for CPR and ECC from the European Resuscitation Council and the American Heart Association.

1.6 General Description

The CAREvent™ ATV+ and MRI consist of a ruggedly constructed, portable control module, input hose and optional single use (or reusable where available) patient circuit. The ergonomically designed control groupings facilitate the selection and setting of the breathing parameters. The colour groupings provided on the controls adds to this ease of use concept.

The unique pneumatic alarm for low input pressure improves the level of safety for the patient by warning the operator of any problems of insufficient or failed gas supply.

The air mix capability of the ventilator improves the operating time on bottled oxygen for long duration transports. The extremely low drive gas consumption ensures full utilization of the cylinder contents.

Controls

The controls provided are as follows:

- Ventilation Frequency
- Pressure Relief (Proximal Airway Pressure)
- Minute Volume

This chart gives an easy reference to the delivered tidal volumes provided by the different combinations of frequency of respiration and minute volume.

3.3 Operation in Extreme Conditions

Operation of the ventilator in environmental conditions outside of those detailed in this manual may result in a reduction in the ventilator’s performance. In extreme cold weather a slowing down of the frequency of ventilation may be seen with a corresponding increase in the delivered tidal volume. In high temperature environments the effect is not noticeable in terms of delivered ventilations but may cause excessive wear in the ventilator components over time.

Operation of the ventilator under supply pressures outside those detailed in this manual may result in a reduction in the ventilator’s performance. Input pressures below the minimum stated will cause the low input pressure alarm to function and will, as the pressure falls to the point where the alarm is constant, cause the ventilator to cease cycling.

Input pressures higher than that recommended in this manual may result in a risk of internal component failure if the pressure exceeds three times the maximum working pressure stated.

4. AFTER USE CLEANING AND TESTING

4.1 Dismantling and Cleaning

After use turn off the ventilator and disconnect the supply hose from the gas supply. Disconnect the patient circuit from the gas outlet on the side of the ventilator and either (a) discard the circuit if it is designed for single use or (b) process the reusable circuit following your normal protocols.

Disinfect using a legally marketed, commercially available, hard surface disinfectant solution which is compatible with the materials in accordance to local protocols. The ventilator can then be cleaned using a mild soap solution and warm water and a soft nail brush to remove ingrained contamination.

WARNINGS: Do not immerse the ventilator in any solutions. Do not use chlorine based cleaning agents. If the ventilator is accidentally submerged in any liquid it should be shaken to remove as much of the liquid as possible and then the ventilator should be returned to the manufacturer for factory service.
3. OPERATING INSTRUCTIONS

3.1 Setting of the Ventilation Parameters

The setting of the ventilation parameters is dependent upon the patient’s size, condition and the clinical parameters required to be provided to the patient by the operator. The controls should be set according to the established protocols to which the operators perform their tasks.

3.2 Frequency/Minute Volume Chart (Fig.6)

<table>
<thead>
<tr>
<th>FREQUENCY OF VENTILATION (BPM)</th>
<th>MINUTE VOLUME (LITRES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>0.01 .02 .03 .04 .05 .06</td>
</tr>
<tr>
<td>36</td>
<td>0.07 .08 .09 .10 .11 .12</td>
</tr>
<tr>
<td>32</td>
<td>0.13 .14 .15 .16 .17 .18</td>
</tr>
<tr>
<td>28</td>
<td>0.19 .20 .21 .22 .23 .24</td>
</tr>
<tr>
<td>24</td>
<td>0.25 .26 .27 .28 .29 .30</td>
</tr>
<tr>
<td>20</td>
<td>0.31 .32 .33 .34 .35 .36</td>
</tr>
<tr>
<td>16</td>
<td>0.37 .38 .39 .40 .41 .42</td>
</tr>
<tr>
<td>12</td>
<td>0.43 .44 .45 .46 .47 .48</td>
</tr>
<tr>
<td>8</td>
<td>0.49 .50 .51 .52 .53 .54</td>
</tr>
<tr>
<td>4</td>
<td>0.55 .56 .57 .58 .59 .60</td>
</tr>
<tr>
<td>2</td>
<td>0.61 .62 .63 .64 .65 .66</td>
</tr>
<tr>
<td>1</td>
<td>0.67 .68 .69 .70 .71 .72</td>
</tr>
<tr>
<td>0.5</td>
<td>0.73 .74 .75 .76 .77 .78</td>
</tr>
<tr>
<td>0.25</td>
<td>0.79 .80 .81 .82 .83 .84</td>
</tr>
<tr>
<td>0.2</td>
<td>0.85 .86 .87 .88 .89 .90</td>
</tr>
<tr>
<td>0.1</td>
<td>0.91 .92 .93 .94 .95 .96</td>
</tr>
</tbody>
</table>

Recommended bodyweight range: 5 Kg to 180 Kg (@ 10ml/Kg)

Visual Indicators

- Delivered Oxygen Concentration (%)
- Manual Ventilation
- Manual/AUTO Selector
- CPAP/PEEP Control
- BSI Alarm Silence Button

Connections

Connections are provided on the side of the ventilator for the Oxygen Input and the Gas Output.

1.7 Principles of Operation

The CAREvent® ATV+ and MRI are time-cycled, Intermittent Positive Pressure devices providing a range of frequencies of ventilation and Minute Volume settings to provide a comprehensive range of delivered tidal volumes and ventilation rates. The design of the micro-pneumatic circuitry in the Automatic Transport Ventilator maintains a consistent I:E ratio of 1:2 across the Minute Volume/frequency combinations to optimise the exchange of gases in the alveoli. This helps avoid the risk of inconsistent ventilations and protracted expiratory times that may cause additional physiological acidosis or short inspiratory times that may not allow for complete alveolar filling or may generate high airway pressures.

NOTE: The design of these ventilators does not incorporate a negative pressure phase during either automatic or manual ventilation.

[8] **BSI Alarm**

With the Patient Circuit attached to the ventilator attach a test lung to the 15/22 mm adapter. Set the frequency control to 14 BPM and the Minute Volume Selector to the 6 L position. Turn the ventilator to AUTO and allow it to cycle for 5 breaths. Remove the test lung and time the delay until the BSI alarm sounds. Depress the silence button and time the delay until the alarm re-starts.

[9] **CPAP/PEEP Control**

With the Patient Circuit attached to the ventilator attach a test lung to the 15/22 mm adapter. Set the frequency control to 8 BPM and the Minute Volume Selector to the 14 L position. Turn the ventilator to AUTO and allow it to cycle for 5 breaths. Slowly open the CPAP/PEEP control and monitor the gauge. As the control is rotated the baseline pressure should increase.
1.8 Modes of Operation

Automatic Ventilation Mode

In the automatic mode (selected by turning the Manual/AUTO Selector on the ventilator control panel to AUTO) the ventilator will supply the patient with positive pressure ventilations of a frequency and minute volume as selected using the Ventilation Frequency and Minute Volume Selectors on the front panel. The I:E ratio is maintained at a constant 1:2 to ensure that good gas exchange takes place in the lung.

Manual Ventilation Mode

To allow the operator to control the patient’s breathing manually, a Manual Ventilation Override button is located on the front panel.

In the AUTO mode, when the Manual Override Button is depressed, the ventilator will cease automatic cycling and will deliver a constant flowrate equivalent to that selected on the flowrate selector for as long as the button is depressed. Releasing the button will allow the ventilator to recycle into an automatic ventilation mode following a delay period of approximately 20 seconds. This delay allows the operator sufficient time to provide chest compressions or initiate a further manual breath should they so wish. If the Manual Override Button is depressed for too long the patient is protected from high airway pressure by the Pressure Relief system.

In the Manual mode, depressing the Manual override button will allow the operator to manually ventilate the patient at a flowrate equivalent to the Minute Volume selected.

Demand Breathing

During automatic ventilation, the Demand Breathing mode will allow the patient to commence spontaneous breathing through the ventilator while causing the automatic cycling to cease. As with the Manual Override, there is an increase in the expiratory time before the next automatic breath is delivered to allow the patient to continue demand breathing. This system ensures that the patient receives a sufficient minute volume should their inspiratory efforts be erratic. Demand Breathing is available to the patient in both the inspiratory and expiratory phases of the ventilation cycle.

With the ventilator connected to the 60 PSI medical oxygen source, set the frequency control to 8 BPM and the Minute Volume Selector set at 14 L, attach the oxygen monitor to the outlet of the patient connector. Turn the Air Mix control to the 100% setting and verify that the oxygen concentration, using the oxygen monitor, is 100%.

Now turn the Air Mix control to the 60% setting and again verify (using the oxygen monitor) that the oxygen concentration is in the range of 54 to 66%.

With the ventilator connected to the 60 PSI source turn the Manual/AUTO Selector to the AUTO position. Set the frequency control to 14 BPM and the Minute Volume Selector to the 6 L position. Allow the ventilator to cycle automatically for 5 breaths.

Depress the Manual Ventilation Button located on the front of the ventilator. Hold the button in and gas will flow to the test lung for as long as the button is depressed.

Release the button and the automatic cycling will restart with a delay of approximately 20 seconds.

NOTE: In the AUTOmatic mode the delay to re-start following depression of the Manual Ventilation control is approximately 1.5 times the E-Time for the selected frequency (in the G05® model this delay is set to 20 seconds for all frequencies).

[7] Demand Valve Function and Automatic Circuit Shut Off

With the ventilator connected to the 60 PSI source, set the ventilator cycling at 12 BPM with a Minute Volume control setting of 14 L. Turn the Manual/AUTO Selector to AUTO and with the ventilator cycling, apply a vacuum to the patient connector equivalent to a flowrate of 30 L/min for a minimum of 1 second. The demand valve will provide a flowrate equivalent to that demanded and the automatic cycling will cease.

Remove the vacuum from the patient connector and check for the automatic cycling restart after a delay of 5-8 seconds.

NOTE: The vacuum source can be as simple as a 500 ml calibration syringe.
With the adjustable outlet pressure regulator set with an outlet pressure of 60 PSI, set the ventilator cycling at 12 BPM with a Minute Volume control setting of 14 L.

As the ventilator cycles, gradually reduce the outlet pressure of the regulator until you hear the Low Input Pressure Alarm activate. This will be a slow, mid pitched, pulsed tone. Continue to decrease the regulator outlet pressure and the tone will gradually slow in frequency until it becomes a continuous tone. This indicates that the drive gas is now exhausted to the point where the ventilator will no longer function correctly.

[3] Frequency Adjustment
With the ventilator connected to the 60 PSI source, set the ventilator cycling at 8 BPM with a Minute Volume control setting of 14 L. Connect the Test Lung to the Patient Connector and turn the ventilator Manual/Auto Selector to the Auto position.

After every 5 breaths rotate the frequency control counter clockwise to the next setting and observe the increasing frequency of ventilation in the Test Lung. Repeat for every setting. If required, a stopwatch may be used to check the frequency in each setting.

With the ventilator connected to the 60 PSI source, set the ventilator cycling at 8 BPM with a Minute Volume control setting of 2 L. Connect the Test Lung to the Patient Connector and turn the ventilator Manual/Auto Selector to the Auto position.

After every 5 breaths rotate the Minute Volume counter control clockwise to the next setting and observe the increasing expansion of the Test Lung. Repeat for every setting. The increasing expansion of the lung indicates an increase in the delivered tidal volume, as the frequency remains constant so the delivered Minute Volume (tidal volume x frequency) will increase with each increase in flowrate.

NOTE: When testing the lower Minute Volume settings using the test lung provided, there may be insufficient volume delivered with each breath to attain an airway pressure that will cause the BSI Alarm to be shut off. Under these circumstances simply depress the BSI Mute Button to silence the alarm.

[5] Air Mix
NOTE: To fully test this function a calibrated 0 - 100% oxygen monitor is required (not supplied).

In the Manual mode the patient can Demand Breathe at their own rate and volume.

NOTE: It is important to constantly observe the patient’s respirations to ensure that adequate perfusion is occurring.

NOTE: Small children may not be able to demand at a sufficient flowrate to disable the automatic cycling.

NOTE: If used in conjunction with external chest compressions the Auto Circuit Shut Off function may be actuated should the depth of compression create sufficient tidal volume on chest re-coil. Under these circumstances a manual breath may be delivered (if deemed necessary) between sets of compressions.

Adjustable Pressure Relief
This control allows the operator to vary the maximum delivered airway pressure. This is achieved by diverting the excess delivered volume to atmosphere should the set airway pressure be reached.

Air Mix Mode
To conserve oxygen during long transports or when a patient’s respiratory condition demands an oxygen concentration of less than 100%, the air mix mode can be selected. This reduces the oxygen concentration to 60%. In this mode the ventilator entrains ambient air into the system and automatically reduces the oxygen flow to maintain a consistent tidal volume. By using this mode the operating time on the cylinder supply is significantly increased.

NOTE: Due to the design of the micro-pneumatic circuit, increasing pulmonary resistance has little effect on the delivered tidal volume or respiratory rate. Research has shown that decreasing pulmonary compliance in the infant Minute Volume settings may give a minimal increase in the delivered oxygen concentration when used in the Air Mix mode.

Emergency Air Intake System for Gas Supply Failure
In accordance with the International Standards for this type of device, the ventilator is equipped with a failsafe Emergency Air Intake circuit which allows the spontaneously breathing patient to draw ambient air through the circuit should the gas supply fail.
1.9 Alarms and Gauges

The alarm systems in the Automatic Transport Ventilator provide an audible indication of any inconsistencies in the patients breathing and warn of a loss of driving pressure from the gas supply. The alarms function as follows:

Low Input Pressure Alarm - Gas Supply

A low frequency oscillating alarm occurs when the gas supply reaches the minimum safe operating pressure. (See also Gas Supply Status indicator).

![Graphic illustration of the audible alarm signal](image)

WARNING: When this alarm sounds, immediately change the gas supply.

Once no leaks are found, connect the Test Lung to the 15/22 mm patient connector on the Patient Circuit. Using the selectors on the front panel, select a frequency of ventilation and a flowrate. Turn the Manual/AUTO Control to the Auto position and the ventilator will commence cycling.

Testing of the Individual Features of the Ventilator.

The following features can be individually tested during the pre-use Functional Check:

1. Airway Over Pressure Alarm, Pressure Gauge Function and Pressure Relief Adjustment Function
2. Low Input Pressure Alarm
3. Frequency Adjustment
4. Flow Adjustment
5. Air Mix
6. Manual Ventilation
7. Demand Valve Function and Automatic Circuit Shut Off
8. CPAP/PEEP Control
9. BSI Alarm

[1] Airway Over Pressure Alarm, Pressure Gauge Function and Pressure Relief Adjustment Function

With the ventilator connected to the 60 PSI source, set the ventilator cycling at 12 BPM with a Minute Volume control setting of 14 L. Set the adjustable Airway Pressure Control to 20 cmH₂O. Remove the Test Lung from the Patient Connector and occlude the Patient Connector outlet. This will cause the Airway Over Pressure Alarm to activate and a continuous tone will be heard during the inspiratory cycle of the ventilator.

To confirm the pressure relief setting, observe the needle on the Airway Pressure Gauge during the inspiratory cycle and ensure that the needle reaches the 20 cmH₂O mark. Now turn the Adjustable Airway Pressure Selector to the 60 cmH₂O position. Repeat the test and observe that the needle reaches the 60 cmH₂O mark.

[2] Low Input Pressure Alarm

NOTE: To fully test this function it is necessary to have a supply regulator with an adjustable output pressure. (Not supplied) Checking of the alarm can be undertaken by simply slowly closing the cylinder valve.
2.2 Connection of Hoses

The supply hose provided is attached to the input connection on the side of the ventilator “finger tight” (fig 5).

WARNING: Using a wrench or excessive force in tightening the supply hose may damage the seal or the thread of the connection.

The patient circuit is attached to the gas outlet on the right hand side of the control module by simply pushing the 22 mm taper over the outlet.

![Connecting the Supply Hose and Patient Circuit](image)

Fig 5. Connecting the Supply hose and Patient Circuit.

2.3 Pre-use Functional Checks

Along with the contents of the shipping cartons you will require the following items to enable you to undertake the pre-use functional check:

1. Full oxygen cylinder
2. Oxygen regulator with a 60 PSI 9/16 DISS outlet. The regulator must be able to output a minimum of 100 L/min at no less than 40.6 PSI (2.8 Bar).
 Calibrated Test Lung (supplied with ventilator)

Having connected the supply hose to the regulator, ensure that the ventilator Manual/AUTO Selector is in the Manual position and turn on the oxygen supply. Using a mild soap solution, spray the input connection to the ventilator to check for leaks. If any leak is present, tighten the connection and re-test.

Airway Over Pressure Alarm – Pressure Relief

Continuous tone of a low pitch during the inspiratory phase of the ventilation that indicates that the maximum airway pressure selected has been reached.

![Pressure Relief Audible Alarm Signal](image)

Fig. 2 Graphic illustration of the Pressure Relief audible alarm signal

Breathing System Integrity (BSI) Alarm

Pulsed tone of a high pitch which activates if the patient circuit becomes disconnected or the airway pressure achieved does not reach 10 cmH₂O. Alarm can be silenced for 15 seconds by depression of the BSI Alarm Mute Button (See also BSI Visual Indicator).

![BSI Audible Alarm Signal](image)

Fig. 3 Graphic illustration of the BSI audible alarm signal
Gas Supply Status Indicator

Located on the front panel, this visual indicator will show green when gas is supplied to the ventilator. Used in conjunction with the Low input pressure alarm, this indicator provides an additional reference for the operator as to the ventilators gas supply status.

BSI Alarm Visual Indicator

Located on the front panel above the airway pressure gauge, this visual indicator will flash red in time with the BSI Audible Alarm when the patient circuit is disconnected or insufficient airway pressure is being produced.

Airway Pressure Gauge

Located on the front panel of the ventilator, this gauge provides the operator with a visual indication of the airway pressure being reached during the ventilation cycle.

1.10 Accessories

Supply Hose

The supply hose is a standard armoured oxygen hose with a 9/16 DISS threaded connection for the ventilator.

Single Use and Reusable Patient Circuits

The Single Use Deluxe Transport Ventilation Circuits and Deluxe Reusable Patient Circuits are comprised of a patient valve housing and 22 mm tubing. The expiratory port is configured to accept either 30 or 19 mm PEEP valves. The 22 mm corrugated tubing is easily attached to the patient circuit output connector on the side of the ventilator. (fig 5.)

NOTE:
1. The choice of using either a Single Use or Reusable circuit is at the discretion of the user. Only patient circuits supplied by O-Two Medical Technologies inc. should be used.
2. The use of a Bacterial/Viral filter is recommended to reduce the potential for cross infection and contamination of the reusable patient circuit. If used, the Bacterial/Viral filter must be used on a single patient basis.
3. The use of a Bacterial/Viral Filter in conjunction with a reusable patient circuit does not guarantee that the patient circuit will remain free of contamination.
4. The use of a bacterial/viral Filter on any of the CAREvent® circuits will increase inspiratory resistance and if used on the distal side of the patient valve will increase deadspace.

NOTE:
When tested as indicated above, the spectroscopy traces were not affected in any way by the CAREvent® MRI ventilator, and the CAREvent® MRI ventilator functioned to specification.

MRI TEST CONDITION PARAMETERS:
The CAREvent® MRI has been tested in a 1.5 Tesla MRI environment (unshielded magnet - spatial gradient of <23Mt/m/sec and a slew rate of 120 T/m/sec at an RF transmitter power of 2000 watts) and a 3.0 Tesla MRI environment (unshielded magnet - spatial gradient of <40Mt/m/sec and a slew rate of 150 T/m/sec at an RF transmitter power of 8000 watts) during a head phantom spectroscopy test scan with the device located no less than 12 inches from the magnet aperture which would be its normal use position during clinical use.

2. PREPARATION FOR USE

2.1 Component List

Having unpacked the ventilator from its shipping carton, use the following list to ensure that all components have been received:

[2] Ventilator
[4] Single Use or Reusable Patient Circuit with Patient Valve
[5] Calibrated Test Lung

NOTE:
If any components are missing from the shipping carton, immediately call the supplier quoting the packing slip number, your original purchase order number and the description of the item which is missing.
LOW INPUT PRESSURE ALARM: AUDIBLE PULSED ALARM TO INDICATE INPUT PRESSURE IS DROPPING BELOW THE MINIMUM REQUIREMENT. CANNOT BE SWITCHED OFF

AIRWAY PRESSURE ALARM: AUDIBLE ALARM TO INDICATE THAT THE SELECTED PEAK AIRWAY PRESSURE HAS BEEN REACHED.

BSI ALARM: AUDIBLE HIGH FREQUENCY PULSED ALARM INDICATING THAT THE PATIENT CIRCUIT IS DISCONNECTED OR INSUFFICIENT VENTILATION PRESSURE (<10 cmH₂O) HAS BEEN ATTAINED.

PRESSURE GAUGE ACCURACY: ± 2% FULL SCALE

INPUT CONNECTION: 9/16” DISS
PATIENT CONNECTION: 15 / 22 mm
DIMENSIONS: 9.27 X 7.6 X 4.4 INCHES 236 X 194 X 112 MM
WEIGHT: 2.84 Kg Approx for ATV+ 3.0 Kg Approx for MRI
PATIENT VALVE DEAD SPACE: 8 ml

CYLINDER DURATION (Aluminum “D” size cylinder containing 415 Litres of oxygen.):

ON 100% SETTING: (a) 2 LITRE Mv - 207 minutes
(b) 14 LITRE Mv - 30 minutes

ON 60% SETTING: (a) 2 LITRE Mv - 345 minutes
(b) 14 LITRE Mv - 50 minutes

NOTE: Careful consideration should be given to the use of a reusable patient circuit on more than one patient. Single use circuits are not designed for use on more than one patient and must be discarded after each use. The manufacturer recommends that circuits are used on a per patient basis and reusable circuits should be cleaned and single use circuits discarded, after each use.

NOTE: The patient valve assembly is flow direction sensitive. Ensure that the patient circuit is attached to the ventilator correctly.

1.11 Control Adjustment

The ventilator is equipped with a number of selectors depending on the model. Each selector is actuated by the following method (Fig 4).

NOTE: All selector positions are as viewed from the front of the ventilator.

[1] Ventilation Frequency (BPM):
Located on the top right hand side of the control panel. Rotary control with an anti-clockwise rotation from low to high.

Located on the bottom right hand side of the control panel. Rotary control with a clockwise rotation from high to low.

[3] Pressure Relief (Maximum Delivered Airway Pressure (cmH₂O)):
Located on the top of the control panel slightly left of center. Rotary control with a clockwise rotation from low to high.

[4] Delivered O₂ Concentration(%):
Located on the bottom left hand side of the control panel. Rotary control with a clockwise rotation from low to high.

Located on the lower center section of the control panel activated by depression of the button.

Located on the front panel of the ventilator. Rotary control with a clockwise rotation from Manual to Auto.
1.12 TECHNICAL DATA

(All specifications are subject to a tolerance of +/- 10% except the I:E Ratio which is subject to a tolerance of +/- 20% and Maximum Airway Pressure +0/-15%)

MINUTE VOLUME RANGE: 2 - 14 L/min
FREQUENCY RANGE: 8 - 40 BPM
I:E RATIO: 1 : 2
INPUT PRESSURE: 45 - 70 PSI (3 - 5 Bar)
AUTOMATIC FLOWRATE: 6 - 42 L/min
MANUAL FLOWRATE 6 - 42 L/min
MANUAL OVERRIDE DELAY TIME: 17 - 23 sec
DEMAND BREATHING FLOWRATE: >100 L/min @ -6 cmH₂O (hPa)
DEMAND BREATHING TRIGGERING PRESSURE: -2 cmH₂O max.
AUTO SHUT OFF DELAY TIME: 5 - 8 sec
CPAP/PEEP 0 - 20 cmH₂O
OXYGEN CONCENTRATION: 60 OR 100 %
INSPIRATORY/EXPIRATORY RESISTANCE < 6cmH₂O (hPa) @ 60 L/min
OPERATING TEMPERATURE: -18°C to +50°C
0°F to +122°F
STORAGE TEMPERATURE: -40°C to +60°C
-40°F to +140°F
GAS SUPPLY STATUS INDICATOR: PROVIDES A VISUAL INDICATION OF GAS SUPPLY STATUS.
PRESSURE RELIEF RANGE 20 - 60 cmH₂O
19.6 TO 58.8 mBar

Fig. 4 Front Panel Layout for ATV+ and MRI models